首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5364篇
  免费   511篇
  国内免费   2篇
  2023年   39篇
  2022年   21篇
  2021年   187篇
  2020年   103篇
  2019年   157篇
  2018年   192篇
  2017年   145篇
  2016年   230篇
  2015年   406篇
  2014年   359篇
  2013年   382篇
  2012年   525篇
  2011年   487篇
  2010年   293篇
  2009年   210篇
  2008年   328篇
  2007年   329篇
  2006年   293篇
  2005年   258篇
  2004年   226篇
  2003年   223篇
  2002年   184篇
  2001年   30篇
  2000年   25篇
  1999年   40篇
  1998年   45篇
  1997年   19篇
  1996年   10篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1988年   4篇
  1986年   5篇
  1985年   3篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1977年   4篇
  1973年   5篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1957年   2篇
排序方式: 共有5877条查询结果,搜索用时 187 毫秒
41.
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.  相似文献   
42.
Microprojections of unionoid shells are virtually unstudied but could be important characters for resolving questions on the phylogeny and ecology of these bivalves. By investigating 26 unionoid and three species of their closest living relatives, the Trigonioida, using scanning electron microscopy, we identified three types of periostracal microprojections. (1) Microridges were present only in one species from each of the two unionoid families Mycetopodidae (Anodontites trapesialis) and Iridinidae (Chambardia bourguignati) and may represent a synapomorphy for the mycetopodid‐iridinid clade. In A. trapesialis, microridges were additionally equipped with (2)ensp;flag‐like projections (microfringes), possibly a synapomorphic character for the Mycetopodidae. Examination of partially bleached specimens indicated that both microridges and microfringes are predominantly or purely organic. In contrast, previously undescribed (3) spicule‐like spikes represent calcifications within the periostracum. These were found in 20 of the 29 species and four of the six unionoid families. Spikes were particularly large and abundant in umbonal (juvenile) shell regions and species characteristic of fast‐flowing habitats. These structures may thus serve in protecting the periostracum and shell underneath, and/or stabilizing life position by increasing shell friction. Microfringes and microridges, on the other hand, possibly aid in the orientation of the mussel within the sediment.  相似文献   
43.
Brain‐derived neurotrophic factor (BDNF) signaling plays a major role in the regulation of hippocampal neurogenesis in the adult brain. While the majority of studies suggest that this is due to its effect on the survival and differentiation of newborn neurons, it remains unclear whether this signaling directly regulates neural precursor cell (NPC) activity and which of its two receptors, TrkB or the p75 neurotrophin receptor (p75NTR) mediates this effect. Here, we examined both the RNA and protein expression of these receptors and found that TrkB but not p75NTR receptors are expressed by hippocampal NPCs in the adult mouse brain. Using a clonal neurosphere assay, we demonstrate that pharmacological blockade of TrkB receptors directly activates a distinct subpopulation of NPCs. Moreover, we show that administration of ANA‐12, a TrkB‐selective antagonist, in vivo either by systemic intraperitoneal injection or by direct infusion within the hippocampus leads to an increase in the production of new neurons. In contrast, we found that NPC‐specific knockout of p75NTR had no effect on the proliferation of NPCs and did not alter neurogenesis in the adult hippocampus. Collectively, these results demonstrate a novel role of TrkB receptors in directly regulating the activity of a subset of hippocampal NPCs and suggest that the transient blockade of these receptors could be used to enhance adult hippocampal neurogenesis.  相似文献   
44.
45.
Three new cyclic heptapeptides (13) together with three known compounds (46) were isolated from a solid rice culture of the soil-derived fungus Clonostachys rosea. Fermentation of the fungus on white beans instead of rice afforded a new γ-lactam (7) and a known γ-lactone (8) that were not detected in the former extracts. The structures of the new compounds were elucidated on the basis of 1D and 2D NMR spectra as well as by HRESIMS data. Compounds 1 and 4 exhibited significant cytotoxicity against the L5178Y mouse lymphoma cell line with IC50 values of 4.1 and 0.1 µM, respectively. Compound 4 also displayed cytotoxicity against the A2780 human ovarian cancer cell line with an IC50 value of 3.5 µM. The preliminary structure-activity relationships are discussed.  相似文献   
46.
47.
While best practices for evaluating restoration ecology projects are emerging rapidly, budget constraints often limit postrestoration monitoring, which emphasizes the need for practical and efficient monitoring strategies. We examined the postrestoration outcome for an ENGO (Nature Conservancy of Canada) project, to assess retroactively how variation in intensity and frequency of sampling would have affected estimates of plant species composition, diversity, and richness over time. The project restored four habitat types (mesic forest, oak woodland, wet meadow, and sand barren) using sculptured seeding of tallgrass prairie and woody species. Species‐level plant cover was monitored annually for 10 years in 168 2 × 2–m quadrats. We performed randomization tests to examine estimates of species diversity and richness as a function of the number of quadrats sampled, and assessed the necessity of annual sampling for describing changes in species composition and successional trajectories. The randomization tests revealed that sampling 10–17 quadrats, depending on habitat type, was sufficient to obtain estimates of species diversity that were at least 95% of values obtained from the whole dataset. Species richness as a function of number of quadrats sampled did not plateau, which suggests that rather than increasing the number of sampling quadrats, richness could be estimated more efficiently using nonquadrat based sampling techniques. Nonmetric multidimensional scaling analysis revealed that plant species composition largely stabilized by 3–5 years postrestoration depending on habitat type. By that time, native, seeded species dominated the restoration, and the benefits of annual sampling for tracking changes in species composition diminished.  相似文献   
48.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号